CEA : THERMODYNAMIC MODELLING OF PROTECTIVE COATING FOR SOLID OXIDE ELECTROLYSIS CELLS (H/F)

Poste
Thèse (288 mois)
Univers
Nucléaire, Energie
Localisation
Gif-sur-Yvette (91, Essonne)

Inscrivez-vous !

En vous inscrivant sur Engagement Jeunes, recevez les offres qui vous correspondent et rendez vous visible des recruteurs.

Présentation de la société : CEA

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité

Missions et profil

In the pursuit of a sustainable energy future, solid oxide electrolysis cells (SOECs) are a highly promising technology for producing clean hydrogen by electrolysis of water at high temperature (between 500 and 850°C) . Although high operating temperature offers many benefits (higher efficiency and lower power consumption) , it can lead to degradation of the interconnectors. Coatings are proposed to improve the long-term performance of interconnectors and reduce corrosion problems, such as (i) development of passivation layers that increase electrical resistivity of the interconnector and (ii) formation of volatile species that poison the O2 electrode. The aim is to find the best coating candidates with high thermodynamic stability, high electrical conductivity and low cation diffusivity. In this context, you will join the LM2T team within the DIADEM Project (https://www.pepr-diadem.fr/projet/atherm_coat-en/) for innovative materials.

Your role will be to:

1) Perform thermodynamic simulations using CALPHAD method and Thermo-Calc Software to predict the stability range of a set of coating candidates (e.g. spinel oxides and perovskites) and the possible decomposition reactions in different atmosphere conditions (temperature and oxygen partial pressure) . In this step, the candidate will also perform a critical review of the thermodynamic data available in the literature.

2) To couple information obtained from CALPHAD calculations and the thermodynamic database (e.g. volume and cation disorder) to estimate the thermal expansion and electrical conductivity (simplified by percolation theory) of the most promising compositions.

The candidate will work closely with the experimental team (ISAS/LECNA and UMR-IPV) producing the coatings to guide future trials and adapt the method to better meet large-scale production needs.

Skills/Qualifications:

  • PhD degree in Chemistry, Physics, Chemical Engineering, Materials Engineering or related fields.
  • You have strong background in thermodynamics.
  • Experience with method CALPHAD and Thermo-Calc is expected, programming skills are essential.
  • Experience in the field of solid oxide electrolysis cell and coatings is an asset.